Home
Class 12
MATHS
|[x^(2)+x,x+1,x-2],[2x^(2)+3x-1,3x,3x-3]...

|[x^(2)+x,x+1,x-2],[2x^(2)+3x-1,3x,3x-3],[x^(2)+2x+3,2x-1,2x-1]|=Ax-

Promotional Banner

Similar Questions

Explore conceptually related problems

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then find A and B

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then

y=|(x^2+x, x+1, x-2),(2x^2+3x+1, 3x, 3x-3),(x^2+3x+2, 2x-1, 2x-1)| represents (A) a straight line (B) a circle (C) a parabola (D) none of these

[[3x^(2),3x,1x^(2)+2x,2x+1,12x+1,x+2,1]]=(x-1)^(3)

(x^(2)-x)-(1)/(2)(x-3+3x^(2))

im_(-)>1[(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

The equation |{:((1+x)^(2),(1-x)^(2),-(2+x^(2))),(2x+1,3x,1-5x),(x+1,2x,2-3x):}|+|{:((1+x)^(2),2x+1,x+1),((1-x)^(2),3x,2x),(1-2x,3x-2,2x-3):}|=0

If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x - 3, x^(2) + 4, 3x):}| = a_(0) + a_(1) x + a_(2) x^(2) + .... + x_(7) x^(7), then the value of a_(0) is