Home
Class 12
MATHS
2tan^(-1)x=cos^(-1)(1-x^(2))/(1+x^(2)),x...

2tan^(-1)x=cos^(-1)(1-x^(2))/(1+x^(2)),x>=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

Evaluate: int(e^(tan^(-1)x))/((1+x^(2)))[(sec^(-1)sqrt(1+x^(2))+cos^(-1)((1-x^(2))/(1+x^(2)))]dx,(x>0)

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

Let f(x)=cos^(-1)((1-x^(2))/(1+x^(2)))=2tan^(-1)xx>=0,=-2tan^(-1)xx>0 function fx ) is continuous everywhere but not differentiable at x equals to

Prove that : tan^(-1)sqrtx=1/2cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove the following : tan^(-1)sqrtx=1/2 cos^(-1)((1-x)/(1+x)),x in[0,1]

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]