Home
Class 12
MATHS
" The value of "int(-2 pi)^(5 pi)cot^(-1...

" The value of "int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx=a pi^(2)" where 'a's "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these

The value of int_(-(pi)/(2))^((pi)/(2))[cot^(-1)x]dx

If I=int_(-2pi)^(5pi) cot^-1(tanx)dx . Then, 2I/pi^2 is ….

The value of tan(pi+x)tan(pi-x)cot^(2)x is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is