Home
Class 12
MATHS
" If "bar(a)timesbar(b)=bar(c)timesbar(d...

" If "bar(a)timesbar(b)=bar(c)timesbar(d)" and "bar(a)timesbar(c)=bar(b)timesbar(d)" Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

(bar(a)times(bar(b)+bar(c))+bar(b)times(bar(c)+bar(a))+bar(c)times(bar(a)+bar(b)))*(bar(a)timesbar(b))|= (A) |bar(b)timesbar(c)| (B) |bar(c)timesbar(a)| (C) |bar(a)timesbar(b)+bar(b)timesbar(c)+(bar(c)timesbar(a))| (D) 0

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

bar(a),bar(b),bar(c) represent three concurrent edges of a rectangular parallelepiped whose lengths are 4,3 ,2 units respectively then find value of (bar(a)+bar(b)+bar(c))*(bar(a)timesbar(b)+bar(b)timesbar(c)+bar(c)timesbar(a))

Let bar(a),bar(b) and bar(c) be non - zero vectors bar(V)_(1)=bar(a)times(bar(b)timesbar(c)) and bar(V)_(2)=(bar(a)timesbar(b))timesbar(c) vectors bar(V)_(1) and bar(V)_(2) are equal then

Let bar(a)=-bar(i)-bar(k) , bar(b)=-bar(i)+bar(j) and bar(c)=bar(i)+2bar(j)+3bar(k) be three given vectors. If bar(r) is a vector such that bar(r)timesbar(b)=bar(c)timesbar(b) and bar(r)*bar(a)=0 , than bar(r)*bar(b) =

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to