Home
Class 12
MATHS
[" For "x>0," let "f(x)=int(1)^(x)(log t...

[" For "x>0," let "f(x)=int_(1)^(x)(log t)/(1+t)dt" .Then "f(x)+f((1)/(x))" is equal to "],[[" 1) "(1)/(2)(log x)^(2)," 2) "(1)/(4)log x^(2)," 3) "log x]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals