Home
Class 12
MATHS
The function f(x)=e^(-|sinx|) is...

The function `f(x)=e^(-|sinx|)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify the truth of Rolle's theorem for the functions: f(x)=e^(-x)sinx" in " [0, pi]

The function f(x)=|sinx|

The function f(x)=x+sinx has

The function f(x)=x+sinx has

Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

The value of c is Rolle 's theorem for the function f(x)=e^(x)sinx,x in[0,pi] , is

The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema at x=alpha and x= beta, then alpha+beta is equal to