Home
Class 11
MATHS
cos^(-1)((2)/(3x)+cos^(-1)((3)/(4x))=(pi...

cos^(-1)((2)/(3x)+cos^(-1)((3)/(4x))=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x>0,cos^(-1)((3)/(x))=(pi)/(2)-cos^(-1)((4)/(x)) then x equals

Prove that cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

Prove that cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Prove that: 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]