Home
Class 9
MATHS
The value of the expression sqrt ((1/(sq...

The value of the expression `sqrt ((1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+.........99 terms` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: (1)/(sqrt2 +1) + (1)/(sqrt3 + sqrt2) + (1)/(sqrt4 + sqrt3)

The value of the greatest term in sqrt3(1+1//sqrt3)^(20) is

The sum of the series (1)/(sqrt1+sqrt2)+ (1)/(sqrt2+ sqrt3)+ ...+ (1)/(sqrt(n)+sqrt(n+1)) is equal to-

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

The sequence 1/sqrt3,1/(sqrt3+sqrt2),1/(sqrt3+2sqrt2),... form an

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

Prove that: 1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)