Home
Class 11
MATHS
The domain of f(x)=sqrt(2{x}^2-3{x}+1), ...

The domain of `f(x)=sqrt(2{x}^2-3{x}+1),` where {.} denotes the fractional part in `[-1,1]` is (a) `[-1,1]-(1/(2,1))` (b)`[-1,-1/2]uu[(0,1)/2]uu{1}` (c)`[-1,1/2]` (d) `[-1/2,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,

The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is [-1,1]-(1/(2,1)) [-1,-1/2]uu[(0,1)/2]uu{1} [-(1,1)/2] (d) [-1/2,1]

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

int_(0)^(x)({x}-(1)/(2))dx=(1)/(2){x}^(2)-(1)/(2){x}, where denotes the fractional part of x.

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

If f'(x)=|x|-{x}, where {x} denotes the fractional part of x, then f(x) is decreasing in (-(1)/(2),0)(b)(-(1)/(2),2)(-(1)/(2),2)(d)((1)/(2),oo)