Home
Class 9
MATHS
For x!=0,+-1, the expression ((1/x^(2007...

For `x!=0,+-1`, the expression `((1/x^(2007)-1/x^(2009))/(1/x^(2008)-1/x^(2010)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2009) xx(1)/(x^(2008))=x

if x+(1)/(x)=1 then x^(2009)+(1)/(x^(2009))

The coefficient of x^(2012) in the expansion of (1-x)^(2008)(1+x+x^(2))^(2007), is

Evaluate the following indefinite integrals : (i) intsqrt(a^(2)-x^(2))dx (ii) int(1)/(sqrt(49+x^(2)))dx (iii) int(1)/(xsqrt(x^(6)-1))dx (iv) intsqrt((1+x)/(1-x))dx (v) intsqrt((x^(2009))/(2x^(2008)-x^(2009)))dx (vi) int(1)/(sqrt((x-4)(x-5)))dx

Evaluate the following indefinite integrals : (i) intsqrt(a^(2)-x^(2))dx (ii) int(1)/(sqrt(49+x^(2)))dx (iii) int(1)/(xsqrt(x^(6)-1))dx (iv) intsqrt((1+x)/(1-x))dx (v) intsqrt((x^(2009))/(2x^(2008)-x^(2009)))dx (vi) int(1)/(sqrt((x-4)(x-5)))dx

Find the number of integers 1<=x<=2010 such that the expression (x+(x+8)sqrt((x-1)/(27)))^((1)/(3))-(x+(x+8)sqrt((x-1)/(27)))^((1)/(3))

The factor of (x^(2010)+y^(2010))^(2010!)-(x^(2009!))^(2010^(2))-(y^(2009!))^(2010^(2)) is: a.x^(2009)b.y^(2009)c.(xy)^(2009!)d.(xy)^(2010)