Home
Class 11
MATHS
f : [-4, 4] ~ {-pi, 0, pi}-> R, where f(...

`f : [-4, 4] ~ {-pi, 0, pi}-> R`, where `f(x)=cot(sinx)+[x^2/(|a|)]`, where [.] denotes the greatest integer function, is an odd function. Complete set of valuesof 'a' is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is