Home
Class 9
MATHS
If f(2x+1/x)=x^2+1/(4x^2)+1(x!=0), the ...

If `f(2x+1/x)=x^2+1/(4x^2)+1(x!=0)`, the value of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

" (1) If "f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0);" then find the value of "f(x)

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If 5f(x)+4f((1)/(x))=x-1,x!=0 then write the value of 9f(2)

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :