Home
Class 11
MATHS
If complex number z(z!=2) satisfies the ...

If complex number `z(z!=2)` satisfies the equation `z^2=4z+|z|^2+(16)/(|z|^3)` ,then the value of `|z|^4` is______.

Promotional Banner

Similar Questions

Explore conceptually related problems

If complex number z(zne2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) , then what is the value of |z|^(4) ?

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation (z^(3)+3)^(2)=-16, then find the value of |z|

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are

If the complex number z satisfies the equations |z-12|/|z-8i|=(5)/(3) and |z-4|/|z-8| =1, "find" z.

Let the complex number z satisfy the equation |z+4i|=3 . Then the greatest and least values of |z+3| are