Home
Class 12
MATHS
[" 3y using properties of determinants i...

[" 3y using properties of determinants in (Exercises "4" to "9" ),show that: "],[[" 4."|[a^(2)+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the proprties of determinants in Exercise 7 to 9, prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinants in Exercise 11 to 15 prove that |{:(1,1+p,1+p+q),(2,3+2p,4+3p+2q),(3,6+3p,10+6p+3q):}|=1

Using properties of determinants,prove that det[[a^(2)+2a,2a+1,12a+1,a+2,13,3,1]]=(a-1)^(3)

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

By using properties of determinants, show that : |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3