Home
Class 11
MATHS
[" If "f(x)" is defined on "(0,1]," then...

[" If "f(x)" is defined on "(0,1]," then the domain "],[" of "f(sin x)" is "],[" 1) "(2n pi,(2n+1)pi),n in Z]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

The function f(x)=tan x is discontinuous on the set {n pi;n in Z}{(2n+1)(pi)/(2):n in Z}(d){(n pi)/(2):n in Z}

The function f(x) is defined on the interval [0.1] Then match the following columns Column I: Function, Column II: Domain f(tanx) , p. [2npi-ddotpi/2,2npi+pi/2],n in Z f(sinx) , q. [2npi,2npi+pi/6]uu[2npi+(5pi)/6,(2n+1)pi],n in Z f(cosx) , r. [2npi,(2n+1)pi],n in Z f(2sinx) , s. [npi,npi+pi/4],n in Z

The function f(x) is defined on the interval [0.1] Then match the following columns Column I: Function, Column II: Domain f(tanx) , p. [2npiddotpi/2,2npi+pi/2],n in Z f(sinx) , q. [2npi,2npi+pi/6]uu[2npi+(5pi)/6,(2n+1)pi],n in Z f(cosx) , r. [2npi,(2n+1)pi],n in Z f(2sinx) , s. [npi,npi+pi/4],n in Z

The function f(x) is defined on the interval [0.1] Then match the following columns Column I: Function, Column II: Domain f(tanx) , p. [2npiddotpi/2,2npi+pi/2],n in Z f(sinx) , q. [2npi,2npi+pi/6]uu[2npi+(5pi)/6,(2n+1)pi],n in Z f(cosx) , r. [2npi,(2n+1)pi],n in Z f(2sinx) , s. [npi,npi+pi/4],n in Z

Find the domain of f(x)=(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)

[" If "sin x sin(60^(@)+x)sin(60^(@)-x)=(1)/(8)" then "],[x" equals "],[n pi+(-1)^(n)(pi)/(6)],[n(pi)/(3)+(-1)^(n)(pi)/(18)],[n pi+(-1)^(n)(pi)/(3)],[(n pi)/(-1)+(-1)^(n)(pi)/(4)]

Find the domain of f(x)=(log)_(10)(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)

Find the domain of f(x)=(log)_(10)(log)_2(log)_(pi/2)(t a n^(-1)x)^(-1)