Home
Class 11
MATHS
[e^(sin x)-e^(-sin x)=4" then find the n...

[e^(sin x)-e^(-sin x)=4" then find the number or rear solutions."],[" If "pi

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

If sin^(-1)(e^(x))+cos^(-1)(x^(2))=(pi)/(2), then find the number of solutions of this equation

Find the number of real solutions of sin (e^x) = 5^x + 5^(-x) .

Find the total number of solutions of sin pi x=|ln|x|

e^(|sin x|)+ e^(-|sin x|) + 4 a = 0 will have exactly four different solutions in [0, 2 pi] is

The equation e^(sin x)-e^(-sin x)-4=0 has

The equation e^(sin x)-e^(-sin x)-4=0 has