Home
Class 12
MATHS
Let tn denotes the n^(th) term of the in...

Let `t_n` denotes the `n^(th)` term of the infinite series `1/(1!)+10/(2!)+21/(3!)+34/(4!)+49/(5!)+.............` Then, `lim_(n->oo) t_n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let t_(n) denote the nth term of the infinite series (1)/(1!) +(10)/(2!) +(21)/(3!) +(34)/(4!) +(49)/(5!) +… . Then lim_( n to oo) t_(n) is

If t_(n) denotes the n th term of the series 2+3+6+1+18+ …….then t_(50) is

If t_n denotes the nth term of the series 2+3+6+11+18+... then t_(50) =...... 49^2-1 b. 49^2 c. 50^2+1 d. 49^2+2

If t_(n)" is the " n^(th) term of an A.P. then the value of t_(n+1) -t_(n-1) is ……

If t_n denotes the nth term of the series 2+3+6+11+18+... then t_(50) a. 49^2-1 b. 49^2 c. 50^2+1 d. 49^2+2

If t_n denotes the nth term of the series 2+3+6+11+18+... then t_(50) a. 49^2-1 b. 49^2 c. 50^2+1 d. 49^2+2

If t_n denotes the nth term of the series 2+3+6+11+18+... then t_(50) a. 49^2-1 b. 49^2 c. 50^2+1 d. 49^2+2

Find sum the series (n)/(1.2*3)+(n-1)/(2.3*4)+(n-2)/(3.4*5)+......... up to n terms..-

Let r^(th) term t _(r) of a series if given by t _(c ) = (r )/(1+r^(2) + r^(4)) . Then lim _(n to oo) sum _(r =1) ^(n) t _(r) is equal to :

If S_(n) denotes the sum of first n terms of the series (9*5^(-2))/(1*2)+(13*5^(-3))/(2*3)+(17*5^(-4))/(3*4)+(21*5^(-5))/(4*5)+.... and T_(r) denotes the r^(th) term of this series,then