Home
Class 12
MATHS
[3*x^(4)+y^(4)=83x^(2)y^(2)" then prove ...

[3*x^(4)+y^(4)=83x^(2)y^(2)" then prove that "log],[((x^(2)-y^(2))/(9))=log x+log y]

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(4) + y^(4) = 83 x^(2)y^(2) then prove that log((x^(2) -y^(2))/9) = logx + logy.

x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

if x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If x^(2)+y^(2)=10xy prove that 2log(x+1)=log x+log y+2log2+log3

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))