Home
Class 12
MATHS
If lim(x->0) (1-cos(1-cos(x/2)))/(2^m x...

If `lim_(x->0) (1-cos(1-cos(x/2)))/(2^m x^n)` is equal to the left hand derivative of `f (x) = e^-(|x|)` at `x = 0`, then the value of `|n+m|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

(lim)_(x->0)(1-cos^n(1-cosx)/(tan^m x))=1 . Then ( n - m ) is :

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) = e^(x) - x) = (3)/(2) then the value of m is _____

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(x rarr0)(1-cos x sqrt(cos2x))/((e^(x)^^2-1))

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) - e^(x) - x) = (3)/(2) then the value of m is _____