Home
Class 12
MATHS
The number of integral values of x for ...

The number of integral values of `x` for which `((2^(pi/(tan^(-1)x))-4)(x-4)(x-10))/(x !-(x-1)!)<0i s- - ----.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x for which ((2^((pi)/(tan^(-1)x))-4)(x-4)(x-10))/(x!-(x-1)!)<0is--

The number of integral values of x for which ((pi/(2tan^(-1)x)-4)(x-4)(x-10))/(x !-(x-1)!)<0i s______

The number of integral values of x for which ((pi/(2^tan^((-1)x-4)))(x-4)(x-10))/(x !-(x-1)!)<0i s______

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) = (3pi)/(4)

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) = (3 pi)/4 is

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3)))=(3pi)/(4) is :

The value of integral I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx is: