Home
Class 12
MATHS
For different values of theta, the locus...

For different values of `theta,` the locus of the point of intersection of the straight lines `x sin theta - y (costheta-1)=a sintheta and x sintheta-y(costheta+1)+a sintheta=0` represents

Promotional Banner

Similar Questions

Explore conceptually related problems

If costheta-sintheta=1 , then theta

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If (sintheta)/(x)=(costheta)/(y) then sintheta-costheta is equal to

Eliminate theta and phi x costheta+y sintheta=a , y costheta-x sintheta=b

Eliminate theta x=a sintheta , y=a costheta

Eliminate theta in the following (i) 2sintheta=x, 3costheta=y (ii) costheta + sintheta=x, costheta-sintheta=y

Eliminate theta in the following (i) 2sintheta=x, 3costheta=y (ii) costheta + sintheta=x, costheta-sintheta=y

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta