Home
Class 12
MATHS
f(x)=sin^(-1)((x)/(1+|x|))...

f(x)=`sin^(-1)((x)/(1+|x|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find domain f(x)=sin^(-1)((x+1)/(x))

If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is a surjective function, then the set A is

If the function f:R rarr A defined as f(x)=sin^(-1)((x)/(1+x^(2))) is a surjective function, then the set A is

The function f(x) given by f(x)=sin^(-1)((2x)/(1+x^(2))) is

If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

If f(x)=sin^(-1)((2x)/(1+x^(2))) then f(x) is differentiable on

The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

Let f(x)=sin^(-1)((2x)/(1+x^(2))) the value of f'(2) is

If f(x)=sin^(-1)((2x)/(1+x^(2))) , then f(sqrt3) is

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1