Home
Class 12
MATHS
Statement-1: The number of solution of t...

Statement-1: The number of solution of the equations `sec^-1 (sqrt(-x^2+6x-8)=sin^-1((3-x)/4)` is exactly one Statement-2: The domain of `sec^-1 x is (-oo, -1] U[1,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

, VD(DL, VD]D) [V3, V6Q.7Statement-1: The number of solution of the equations sec-( V-x? +6x – 8) = sin(3, 02exactly one.Statement-2: The domain of sec-' x is (–00,-1] [1,0)(A) Statement-I is true, statement-2 is true and statement-2 is correct explanatione

The number of real solutions of the equation sin^(-1)((1+x^(2))/(2x))=(pi)/(2)sec(x-1) is

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)is/are

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x) is/are

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x) is/are ____

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi//2 a)0 b)1 c)2 d) oo

The domain of f(x)=Sin^(-1)x+Sec^(-1)x is

The domain of the function f(x)=sqrt(Sec^(-1)((1-|x|)/(2))) is

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Statement - 1: If alpha,beta are roots of 2x^(2)-3x-2=0 and alphagtbeta , then sec^(-1)alpha exists but not sec^(-1)beta . Statement - 2 : Domain of sec^(-1)x is R-(-1,1)