Home
Class 12
MATHS
If all the roots of the equation x^3 - 3...

If all the roots of the equation `x^3 - 3x = 0` satisfy the equation `(alpha - sin^-1(sin 2))x^2- (beta-tan ^-1(tan 1))x + gamma^2 – 2gamma + 1 = 0,` then find the value of |`cot(beta+gamma)+cotalpha`|

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation x^(3)+2x+r=0 the equation whose roote are -alpha^(-1),-beta^(-1),-gamma^(-1) is

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta , gamma are the roots of the equation x^3-3x+2=0 then the equation whose roots are 1/alpha,1/beta,1/gamma is :

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=