Home
Class 12
MATHS
[" 14.If "f(x)={[1,,x<0],[1+sin x,,0<=x<...

[" 14.If "f(x)={[1,,x<0],[1+sin x,,0<=x<(pi)/(2)]],[" the derivative "f'(x)" is "],[[" (a) "1," (b) "0],[" (c) infinite "," (d) not defined "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

" 4.If f(x)=(x+1)/(x-1) then f(x)+f((1)/(x)) is

1.3.If f(x)=x+(1)/(x) ,then value of f(x)+f(1/x) is

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x) provided that x!=0,1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function