Home
Class 10
MATHS
lim(n rarr oo)(1)/(n)=....

`lim_(n rarr oo)(1)/(n)=`________.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)tan^-1n/n

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo) (n(n+1))/(n^(2))= ________.

lim_(n rarr oo)(n!)/((n+1)!-n!)

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

The value of lim_(n rarr oo)((1)/(2^(n))) is