Home
Class 11
MATHS
lim(x rarr2)(sin(e^(x-2)-1))/(log(x-1))"...

lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

lim_(x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to

lim_ (x rarr2) (tan (e ^ (x-2) -1)) / (ln (x-1))

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x)=)

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

Value of lim_(x rarr 3)(sin(e^(x-3) -1))/log(x-2) is

lim_(x rarr0x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to 2 (b) -2(c)1 (d)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)((e^(x)-1)log(1+x))/(sin x)