Home
Class 12
MATHS
Show that : 3 (sin x - cos x)^4 + 6 (sin...

Show that : `3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3 (sin x-cos x)^4+ 6 (sin x +cosx)^ 2+4 (sin^6 x+ cos^6 x) -13=0

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

Show that : 2 (sin^6 x + cos^6 x) -3 (sin^4 x + cos^4 x) + 1 =0 .

If f(x) = 3(sin x - cos x)^(4) + 6(sin x + cos x)^(2) +4(sin^(6)x + cos^(6)x) and f(pi/7) = 13 then find f (2pi/7) .

Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13

Show that 3(sin x- cos x)^(4)+4 (sin ^(6)x+cos^(6)x)+ 6(sin x+cos x)^(2)=13

2 [ sin x - cos x ]^(4) + 6 [ sin x + cos x ]^(2) + 5 [ sin^(6)x + cos^(6) x ] = ? (a)6 (b)4 (c)3 (d)13

Show that 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=13