Home
Class 12
MATHS
xy + y^(2) = tan x + y...

`xy + y^(2) = tan x + y `

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if xy^2 + y^2 = tan x + y

xy = tan (x + y)

(sin x + sin y) / (sin x-sin y) = tan ((x + y) / (2)) * cot ((xy) / (2))

(1-tan x) / (1 + tan x) = tan y and xy = (pi) / (6), thenx, y

Let's simplify:- (x + y) (x^2 -xy + y^2) + ( x - y) (x^2 + xy + y^2)

tan ^ (- 1) ((1) / (x + y)) + tan ^ (- 1) ((y) / (x ^ (2) + xy + 1)) = cot ^ (- 1) x

If cos ^ (- 1) x + cos ^ (- 1) y = (pi) / (2), tan ^ (- 1) x-tan ^ (- 1) y = 0 then x ^ (2) + xy + y ^ (2) =

x tan (theta- (pi) / (6)) = y tan (theta + (2 pi) / (3)) then (x + y) / (xy) =

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

(dy) / (dx) tan y = sin (x + y) + sin (xy)