Home
Class 12
MATHS
If a function is defined as f(x)=sqrt(lo...

If a function is defined as `f(x)=sqrt(log_(h(X)) g(x)` , where `g(x) = |sinx| + sinx `, `h(x) = sinx + cosx`,`0<=x<=pi` ,then find the doman of f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If g is inverse of function f and f'(x)=sinx , then g'(x) =

Show that f (x) f (y) = f(x+y) , where f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] .

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If function f:RtoR is defined by f(x)=sinx and function g:RtoR is defined by g(x)=x^(2), then (fog)(x) is

Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) then g(x) is

Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) then g(x) is

The domain of the function f(x)=sqrt(log_(sinx+cosx)(abs(cosx)+cosx)), 0 le x le pi is