Home
Class 8
MATHS
[" If "a^(x)=b^(y)=c^(z)" and "b^(2)=a(c...

[" If "a^(x)=b^(y)=c^(z)" and "b^(2)=a_(c)],[y=(2xz)/(x+z)]

Promotional Banner

Similar Questions

Explore conceptually related problems

if a^(x)=b^(y)=c^(z) and b^(2)= acprove that y=(2xz)/(x+z)

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a^(x)=b^(y)=c^(z)backslash and quad b^(2)=ac, then y equals a.(xz)/(x+z) b.(xz)/(2(x-z)) c.(xz)/(2(z-x))d .(2xz)/((x+z))

If a^(x)=b^(y)=c^(z) and y=sqrt(xz) , find the value of ( logalogc )/((log b)^(2))

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

If x^(a) = y^(b) = z^ (c ) and y^(2) = xz, prove that b= ( 2ac)/( a+c)