Home
Class 10
MATHS
If a ,bc ,d are in G.P, then (b-c)^2+(c-...

If `a ,bc ,d` are in G.P, then `(b-c)^2+(c-a)^2+(d-b)^2` is equal to `(a-d)^2` b. `(a d)^2` c. `(a+d)^2` d. `(a//d)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b, c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to

If a ,b, c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to

If a ,b ,c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to (a-d)^2 b. (a d)^2 c. (a+d)^2 d. (a//d)^2

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a, b, c, d are in G.P., then (a + b + c + d)^(2) is equal to

If a,b,c,d be in G.P. show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.