Home
Class 12
MATHS
f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) wher...

`f(x)=cos^-1sqrt(log_([x]) ((|x|)/x))` where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of the following function: f(x)=cos^(-1)sqrt(log_([x])(|x|)/x) , whre [.] denotes the greatest integer function.

The domain and range of f(x) = cos^(-1)sqrt(log_([x])(|x|/(x))) where[.] denote the greatest integer function are respectively

f(x)=cos^(-1)sqrt(log_([x])""abs(x)/x) , where [*] denotes the greatest integer.

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

f(x)=log_([x-1])sin x, where [.1 denotes the greatest integer.

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

Find the domain and range of f(x)=sin^(-1)(log[x])+log(sin^(-1)[x]), where [.] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then