Home
Class 12
MATHS
[log(theta)-sin theta],[cos theta]|[" (i...

[log_(theta)-sin theta],[cos theta]|[" (ii) "|[x^(2)-x+1,x-1],[x+1,x+1]|," order "3" only."],[[[1,2]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}

(i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}

(i) {:|( cos theta , -sin theta ),( sin theta , cos theta ) |:}" " (ii) {:|( x^(2) -x+1,x-1),( x+1,x+1) |:}

Find the value of the determinants (i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}

Evaluate the determinants (i) {:[( cos theta , -sin theta ),( sin theta , cos theta ) ]:}" " (ii) {:[( x^(2) -x+1,x-1),( x+1,x+1) ]:}

,x,sin theta,cos theta-sin theta,-x,1cos theta,1,x]|=8, write the value

If y=log(1+ theta), x= sin^(-1) theta , then (dy)/(dx) =

If y=log(1+ theta), x= sin^(-1) theta , then (dy)/(dx) =

Prove that the determinant |[x,sin theta,cos theta],[-sin theta,-x,1],[cos theta,1,x]| is independent of

x=sqrt((1-cos theta)/(1+cos theta))rArr(2x)/(1-x^(2))=