Home
Class 11
MATHS
[" If a and b are positive integers with...

[" If a and b are positive integers with no common factor,show that "],[[(a)/(b)]+[(2a)/(b)]+[(3a)/(b)]+...+[((b-1)a)/(b)]=((a-1)(b-1))/(2)," where "[.]" denotes the greatest integer "],[" function "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are positive integers with no common factor,show that [(a)/(b)]+[(2a)/(b)]+[(3a)/(b)]......[((b-1)a)/(b)]=((a-1)(b-1))/(2) when [.] shows the greatest integer function

If a and b are positive integers with no common factor,show that [(a)/(b)]+[(2a)/(b)]+[(3a)/(b)]+....[((a-1)0)/(b)]=((a-1)(b-1))/(2) when [;] denctes the

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

(lim)_(xvec(-1^-)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

Period of f(x)=x-[x+a]-b, wherea,a,b in R^(+) and [.] denotes the greatest integer function,is

Let a and b be positive integers.Show that sqrt(2) always lies between and (a)/(b) and (a-2b)/(a+b)

If lim_(x rarr1)(3-x+a[x-1]+b[x+1]) exists (where [ ] denotes the greatest integer function),then value of a + b

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

The value of B=int_1^100 [sec^-1x]dx, (where [ . ] denotes greatest integer function), is equal to