Home
Class 12
MATHS
" Let "f(1)=1" and "f(n)=2sum(r=1)^(n-1)...

" Let "f(1)=1" and "f(n)=2sum_(r=1)^(n-1)f(r)*" Then "sum_(n=1)^(m)f(n)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(1)=1 and f(n)=2 sum_(r=1)^(n-1)f(r) then sum_(n=1)^(m)f(n)=

f(1)=1 and f(n)=2sum_(r=1)^(n-1)f(r). Then sum_(n=1)^(m)f(n) is equal to (A)3^(m)-1(B)3^(m)(C)3^(m-1) (D)none of these

f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r) . Then sum_(n=1)^mf(n) is equal to (A) 3^m-1 (B) 3^m (C) 3^(m-1) (D)none of these

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :