Home
Class 11
MATHS
Prove that :1^2+2^2+3^2++n^3={(n(n+1))/2...

Prove that :`1^2+2^2+3^2++n^3={(n(n+1))/2}^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 1^3+2^3+3^3++n^3={(n(n+1))/2}^2dot

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

Prove that : 1^(3)+2^(3)+3^(3)++n^(3)={(n(n+1))/(2)}^(2)

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Prove by mathematical induction that 1^3+2^3+……+n^3=[(n(n+1))/2]^2

Prove that :1+2+3+...+n=(n(n+1))/(2)

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N