Home
Class 11
MATHS
If int0^x{t}dt=int0^({x}) t dt (where x ...

If `int_0^x{t}dt=int_0^({x}) t dt` (where `x > 0, x !in I` and represents fractional part function), then

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x){t}dt=int_(0)^({x})t dt ("where" x gt0 neZ and and {*} represents fractional part function), then

If int_(0)^(x){t}dt=int_(0)^({x})t dt ("where" x gt0 neZ and and {*} represents fractional part function), then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

If f(x)=int_0^x tf(t)dt+2, then