Home
Class 11
MATHS
If f (x) = sin x + cos x and g(x)= {|x|/...

If `f (x) = sin x + cos x` and `g(x)= {|x|/x x!=0 , 2, x=0` then the value of `int_(-pi/4)^(2pi) gof(x) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin x+cos x and g(x)={(|x|)/(x)x!=0,2,x=0 then the value of int_(-(pi)/(4))^(2 pi)gof(x)dx is equal to

If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) gof(x) dx is equal to (a) (3pi)/(4) (b) (pi)/(4) (c) pi (d) None of these

If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) go f(x) dx is equal to

The value of int_(0)^((pi)/(2))x sin x dx is equal to -

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2 pi)|cos x-sin x|dx is

int_(0)^(2pi) (sin x-|sin x|) dx equal to