Home
Class 11
MATHS
Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt ...

Let `f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-)+f(x + 1)`, for all `x in R`.Then,the value of `int_-3^3 g(x)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={1-|x|,|x| leq 1 and 0,|x| lt 1 and g(x)=f(x-1)+f(x + 1) , for all x in R .Then,the value of int_-3^3 g(x)dx is

If f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)=f(x-1)+f(x+1), find the value of int_(-3)^3g(x)dxdot

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

f(x)={[1-|x|,|x| 1' find the value of int_(-3)^(5)g(x)dx

If x^2f(x)+f(1/x)=2 for all x except at x=0 then int_(1/3)^3 f(x) dx=

Let f(x)=1+x , 0 leq x leq 2 and f(x)=3−x , 2 lt x leq 3 . Find f(f(x)) .

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1 f(x) g (x) dx is :

Let f:R to R be a continuous function and f(x)=f(2x) is true AA x in R . If f(1) = 3 then the value of int_(-1)^(1) f(f(x))dx=