Home
Class 11
MATHS
If int1^x (dt)/(|t|sqrt(t^2-1))=pi/6 the...

If `int_1^x (dt)/(|t|sqrt(t^2-1))=pi/6` then `x` can be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

If int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6 , then x=

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to

The solution of int_(sqrt2)^(x) (dt)/(t sqrt( t^2 -1) )= (pi)/(12) is a)1 b)2 c)3 d)4

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals