Home
Class 11
MATHS
int0^pi|1+2cosx| is equal to...

`int_0^pi|1+2cosx|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)|1+2cosx| dx is equal to :

int_(0)^(pi)|1+2cosx| dx is equal to :

if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

int_(0)^(pi)abs(cosx)dx is equal to :

int_0^pi dx/(1+cosx)

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi//2)|sinx-cosx|dx is equal to

int_(0)^(pi/2) |sinx - cosx |dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to