Home
Class 11
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot` Then `int_(-3)^5f(|x|)dx` is equal to `(19)/2` (b) `(35)/2` (c) `(17)/2` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

f(x) is a continuous function for all real values of x and satisfies int_(n+1)^(n+1)f(x)dx=(n^(2))/(2)AA n in I. Then int_(5)^(5)f(|x|)dx is equal to (19)/(2) (b) (35)/(2) (c) (17)/(2) (d) none of these

If f(x) be a continous function for all real values of x and satisfies int_3^(x) f(t) dt = x^(2)/2 + int_x^(8) t^(2) f(t) dt then int_(-1/2)^(1) f(x) dx =

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to