Home
Class 11
MATHS
If I(a)=int0^1 (x^(cosa-1)/(lnx)) dx a ...

If `I(a)=int_0^1 (x^(cosa-1)/(lnx)) dx` a being a real number other than an odd multiple of `pi`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

For any real number A ,which is not an odd multiple of (pi)/(2) , sin2A=

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

Evaluate, int_(0)^(1)(x^(b)-1)/(lnx)'b' being parameter.

Evaluate, int_(0)^(1)(x^(b)-1)/(lnx)'b' being parameter.

int1/(loga)(a^(x)cosa^(x))dx=

int1/(loga)(a^(x)cosa^(x))dx=

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

int(lnx)^(-1)dx-int(lnx)^(-2) dx is equal to