Home
Class 11
MATHS
Let In=int1^e(lnx)^ndx, n in N Statement...

Let `I_n=int_1^e(lnx)^ndx, n in N` Statement I `I_1,I_2,I_3` is an increasing sequence. Statement II In x is an increasing function.

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=int(sinx)^ndx, n in N , then 5I_4-6I_6 is equal to

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

If I_(n)=int(lnx)^(n)dx then I_(n)+nI_(n-1)

Let I_n = int_0^(npi) sinx/(1+x) dx n = 1,2,3,4. Arrange I_1 , I_2, I_3,I_4 in increasing order of magnitude.

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to