Home
Class 11
MATHS
Statement I int0^(npi+t) |sinx|dx=(2n+1...

Statement I `int_0^(npi+t) |sinx|dx=(2n+1)-cost,(0 leq t leq pi) `Statement II `int_a^bf(x)dx=int_a^ef(x)dx+int_e^bf(x)dxint_0^(n a)f(x)dx=nint_0^af(x)dx"if"f(a+x)=f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx .

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

int_0^af(a-x)dx =..... a) int_0^(2a)f(x)dx b) int_-a^af(x)dx c) int_0^af(x)dx d) int_a^0f(x)dx

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to