Home
Class 11
MATHS
The value of B=int1^100 [sec^-1x]dx, (w...

The value of `B=int_1^100 [sec^-1x]dx`, (where [ . ] denotes greatest integer function), is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)[cos^(-1)x]dx (where [.] denotes greatest integer function)

The value of int_(1)^(oo)[cos ec^(-1)x]dx .(where [.] denotes greatest integer function),is equal to (A) cos ec1-1(B)1(C)1-sin1(D) none of these

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(100)[tan^(-1)x]dx is,(where [^(*)] denotes greatest integer function)

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to