Home
Class 11
MATHS
Using integral int0^(-pi/2)ln(sinx)dx=-...

Using integral `int_0^(-pi/2)ln(sinx)dx=-int_0^piln(secx)dx=-pi/2ln2 and int_0^(pi/2)ln(tanx)dx=0 and int_0^(pi/4)ln(1+tanx)dx=pi/8ln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2)log(tanx)dx=

int_(0)^(pi//2)log(sinx)dx=

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^(pi//4)log(1+tanx)dx=

int_0^(pi//2) log(tan x)dx =

int_(0)^((pi)/(2))log(tanx)dx=0

int_(0)^(pi//2)log(cosx)dx=

Evaluate int_0^(pi/2) log(tanx)dx

int_(0)^((pi)/(2))log(tanx)dx