Home
Class 11
MATHS
[" Letf: "(2,4)rarr(1,3)" where "f(x)=x-...

[" Letf: "(2,4)rarr(1,3)" where "f(x)=x-[x/2]" (where [.] denotes the greatest integer function)."],[" Then "f'(x)" is "],[[" (A) not defined "," (B) "x-1],[" (C) "x+1," (D) none of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(2,4)rarr(1,3) where f(x)=x-[(x)/(2)] (where [.1. denotes the greatest integer function).Then f^(-1)(x) is

Let f: (2,4) rarr (1,3) where f(x) = x - [x//2] (where [ .] denotes the greatest integer function), then f^(-1)(x) is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is