Home
Class 12
MATHS
If a complex number z satisfies |z|^(2)+...

If a complex number `z` satisfies `|z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0`, then the maximum value of `|z|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If z satisfies the equation ((z-2)/(z+2))((barz-2)/(barz+2))=1 , then minimum value of |z| is equal to :

If z satisfies the equation ((z-2)/(z+2))((barz-2)/(barz+2))=1 , then minimum value of |z| is equal to :

Find the complex number z if z^2+barz =0

If complex number z(zne2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) , then what is the value of |z|^(4) ?

Find all complex numbers satisfying barz = z^2 .

If complex number z(z!=2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) ,then the value of |z|^(4) is

Number of complex numbers satisfying z^3 = barz is

Number of complex numbers satisfying z^3 = barz is